Destabilization of tetraplex structures of the fragile X repeat sequence (CGG)n is mediated by homolog-conserved domains in three members of the hnRNP family.
نویسندگان
چکیده
Hairpin or tetrahelical structures formed by a d(CGG)n sequence in the FMR1 gene are thought to promote expansion of the repeat tract. Subsequent to this expansion FMR1 is silenced and fragile X syndrome ensues. The injurious effects of d(CGG)n secondary structures may potentially be countered by agents that act to decrease their stability. We showed previously that the hnRNP-related protein CBF-A destabilized G'2 bimolecular tetraplex structures of d(CGG)n. Analysis of mutant proteins revealed that the CBF-A-conserved domains RNP11 and ATP/GTP binding box were sufficient and necessary for G'2 d(CGG)n disruption while the RNP21 motif inhibited the destabilization activity. Here, we report that a C-terminal fragment of CBF-A whose only remaining conserved domain was the ATP/GTP binding motif, disrupted G'2 d(CGG)n more selectively than wild-type CBF-A. Further, two additional members of the hnRNP family, hnRNP A2 and mutant hnRNP A1 effectively destabilized G'2 d(CGG)n. Examination of mutant hnRNP A2 proteins revealed that, similar to CBF-A, their RNP11 element and ATP/GTP binding motif mediated G'2 d(CGG)n disruption, while the RNP21 element blocked their action. Similarly, the RNP11 and RNP21 domains of hnRNP A1 were, respectively, positive and negative mediators of G'2 d(CGG)n destabilization. Last, employing the same conserved motifs that mediated disruption of the DNA tetraplex G'2 d(CGG)n, hnRNP A2 destabilized r(CGG)n RNA tetraplex.
منابع مشابه
The cationic porphyrin TMPyP4 destabilizes the tetraplex form of the fragile X syndrome expanded sequence d(CGG)n.
Fragile X syndrome, the most common cause of inherited mental retardation, is instigated by dynamic expansion of a d(CGG) trinucleotide repeat in the 5'-untranslated region of the first exon of the FMR1 gene, resulting in its silencing. The expanded d(CGG)(n) tract readily folds into hairpin and tetraplex structures which may contribute to the blocking of FMR1 transcription. In this work, we re...
متن کاملThe tetraplex (CGG)n destabilizing proteins hnRNP A2 and CBF-A enhance the in vivo translation of fragile X premutation mRNA
Expansion of a (CGG)n sequence in the 5'-UTR of the FMR1 gene to >200-2000 repeats abolishes its transcription and initiates fragile X syndrome (FXS). By contrast, levels of FMR1 mRNA are 5-10-fold higher in FXS premutation carriers of >55-200 repeats than in normal subjects. Lack of a corresponding increase in the amount of the product FMRP protein in carrier cells suggest that (CGG)>55-200 tr...
متن کاملسندرم ایکس شکننده و گزارش 3 مورد (بررسی سیتوژنیک و ملکولی)
ABSTRACT The fragile X syndrome is the most frequent cause of inherited mental retardation. The fragile site is on the long arm of X chromosome in X q27.3 region. Incidence of syndrome is 1 in 2000 in males and 1 in 2500 in females. This fragile site is visible only with using of special cultural technices. Since females have two X chromosomes, this signs apear less than males. The females who...
متن کاملTDP-43 suppresses CGG repeat-induced neurotoxicity through interactions with HnRNP A2/B1.
Nucleotide repeat expansions can elicit neurodegeneration as RNA by sequestering specific RNA-binding proteins, preventing them from performing their normal functions. Conversely, mutations in RNA-binding proteins can trigger neurodegeneration at least partly by altering RNA metabolism. In Fragile X-associated tremor/ataxia syndrome (FXTAS), a CGG repeat expansion in the 5'UTR of the fragile X ...
متن کاملRNA-Binding Proteins hnRNP A2/B1 and CUGBP1 Suppress Fragile X CGG Premutation Repeat-Induced Neurodegeneration in a Drosophila Model of FXTAS
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a recently described neurodegenerative disorder of older adult carriers of premutation alleles (60-200 CGG repeats) in the fragile X mental retardation gene (FMR1). It has been proposed that FXTAS is an RNA-mediated neurodegenerative disease caused by the titration of RNA-binding proteins by the CGG repeats. To test this hypothesis, we util...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 32 14 شماره
صفحات -
تاریخ انتشار 2004